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Abstract

We introduce PokéChamp, a Large Language Model (LLM) powered game-
theoretic aware agent for two-player competitive Pokémon battles, that uses an
LLM prior and collected high-Elo human data to model minimax search without
any additional neural network training. PokéChamp uses a depth-limited minimax
search online where the LLM replaces three key components: 1) action sampling
from the LLM guided by prompts (including from a damage calculation tool),
2) opponent-modeling via the historical likelihood of actions from our dataset to
model the effect of LLM-predicted opponent actions, and 3) state value calculation
for the LLM to reflect on each intrinsic state. PokéChamp outperforms all existing
LLM-based (76%) and rule-based bots (84%) by an enormous margin, including
winning consistently (64%) against prior human-parity work run with a frontier
model, GPT 4-o, while using an open-source 8 billion parameter Llama 3.1 model.
PokéChamp achieves expert performance in the top 10% of players on the online
ladder against competitive human players at an Elo of 1500. Finally, we collect
the largest Pokémon battling dataset, including 1 million+ games with 150k+ high
Elo games, prepare a series of battling benchmarks based on real player data and
puzzles to analyze specific battling abilities, and provide crucial updates to the
local game engine. Our code is available online.

1 Introduction

A desirable element of a language agent is to be able to approach Nash solutions for competitive tasks.
Previous work in reinforcement learning [6, 13, 12, 4, 3, 16, 2] finds the best performance through
tabula rasa self-play or train large language models via imitation learning and human-regularized
self-play [8]. Language agents have the ability to leverage prior information about background and
task strategies and apply it to new situations. Recent advances in these text agents have shown that
they lack basic planning capabilities [15], perform worse than hardcoded heuristic bots for games [11],
and have issues understanding the basic game mechanics [9].

Let us consider competitive Pokémon as an example. With a vast number of Pokémon species that
each have their own unique abilities, moves, typing, special mechanics, and range of stats, the total
number of possible states is on the order of 10354 [14] and this is only for turn 1. Information
about the opponent’s team is only partially observable, which keeps the search space from shrinking
once the opponent’s team is revealed. Pokémon battles can last anywhere from 6 to over 100 turns,
meaning exhaustive self-play can be quite computationally intractable. We argue that an informative
prior can help limit minimax search to the space of human strategies. Large language models (LLMs)
have the potential to be trained on text datasets that include information about Pokémon, but are not
exhaustive since they are not the focus of training. Thus, we want an agent that can harness the prior
of large language models to: (1) propose optimal actions to provide highly likely, diverse actions
for potential strategies, (2) accurately model the opponent based on their move history, team, and
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strategy based on their skill-level, and (3) reflect on an internally planned game trajectory without
requiring a terminal win/lose state.

Thus, to achieve these mechanisms, we introduce PokéChamp, a competitive language agent
that achieves human-expert level performance in the two-player turn-based battles in Pokémon.
PokéChamp uses a large language model to power generative minimax tree search through the
following elements: (1) action branching from tool-use and LLM sampling; (2) LLM-based
opponent-modeling via information from our collected historical data of real Pokémon battles to
provide likely team compositions, which is prompted to the LLM to provide opponent actions; and
(3) using a score rating guide prompt and the internally predicted state from our world model engine,
provide an LLM-generated value calculation of leaf nodes. Based on the depth of our tree, the sum
of the values of the leaf nodes is backpropagated up through the tree to output the most likely action.
The LLM acts as a black box, in which it can be switched out based on one’s compute availability and
used with better frontier LLMs as they are developed. Our approach prevents the need for additional
training or fine-tuning on Pokémon-specific data.

Empirically, PokéChamp demonstrates expert-level performance in Pokémon battles. Our agent is
able to choose optimal actions with a short minimax planning lookahead. We evaluate PokéChamp
in an arena setup against other competitive Pokémon bots, including heuristic bots and an LLM-
based agent PokéLLMon [9], in two highly played game modes: Generation 8 Random Battles
(gen8randombattles) and Generation 9 OverUsed Meta (gen9ou). PokéChamp outperforms all other
bots and AI agents, with the largest margin being in gen9ou with a 76% winrate against the strongest
LLM-based bot and an 84% winrate against the strongest heuristic bot. Our method is also able
to bootstrap smaller language models such as Llama3.1:8b to win consistently (64%) against prior
LLM-based bots with GPT-4o. In online ladder battles, we find that our language agent, PokéChamp,
achieves an expert rating on 1500 Elo, which is just shy of the top 500 players.

2 PokéChamp

PokéChamp consists of three novel components that perform a minimax tree search: (1) policy
sampling via a combination of LLM and tool-use, (2) opponent modeling via historical data and LLM
generation, and (3) an LLM-generated value function. To output the best action, the value is recursed
through the tree to choose the action with the maximum value for player moves and the minimum
value for opponent moves. Full prompts are available in the Appendix. See figure 2.

2.1 Action Sampling

Using the input prompt, PokéChamp generates an edge for both action types: move and switch. The
top move choice by the damage calculator are top switch choice from the Abyssal bot, which rates
matchups based on a fixed set of rules, is also used as a branch of the search tree. The edges of the
minimax search tree are made of action samples from the LLM. The input prompt consists of the
following features:

• LLM Team strategy: The LLM is asked to generate an overall team strategy based on the
summary of the player’s team and the opponent’s team;

• State: This includes the available team, items, opponent’s visible team, etc;

• Battle history: This includes the information from the last N turns.;

• Damage calculation: For each of the current Pokémon’s damaging and stat raising moves,
the number of turns to KO the opponent’s Pokémon is calculated. Additionally, the number
of turns including switching to another Pokémon and then KO’ing the opponent’s current
Pokémon is calculated. This can be thought of as a depth-first search heuristic with a cutoff
at KO;

• Available actions: The current pokémon has up to 4 available moves, up to 5 available
switch options, and a special mechanic such as dynamax or terastallize, if available.

Damage Calculator The damage calculator provides a feature for individual Pokémon matchups.
For each matchup, the damage calculator predicts how many times it takes each damaging move to
KO the opponent’s Pokémon. If the Pokémon has a status move, we advance a local simulation of the
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Table 1: Battling in Gen 9 OU without the terastallize mechanic in mirror matchups.

Bot Method Language Model Win Rate vs. Abyssal (%)
PokéChamp (Ours) GPT-4o 90%
PokéChamp (Ours) Llama 3.1:8b 83%
PokéLLMon GPT-4o 60%
Dmg Calc N/A 56%

Table 2: Battling in Gen 9 OU with the terastallize mechanic and custom teams.

Bot Method Language Model Win Rate vs. Abyssal (%) Elo Avg # Turns
PokéChamp (Ours) GPT-4o 84% 1268 15.7
PokéChamp (Ours) Llama 3.1:8b 56% 1204 16.9
PokéLLMon GPT-4o 40% 1020 22.6
Abyssal N/A N/A 1117 17.9
Dmg Calc N/A 44% 1107 17.9
Max Power N/A 16% 885 19.5
Random N/A 0% 399 21.2

world to update the state and then try each move with the damage calculator. This solves an abridged
tree search to output the best move. We create our own damage calculator that uses the following
equation [5],

Damage =

(
1

50

((
2

5
· Level + 2

)
· Power · A

D

)
+ 2

)
· Other Mechanics (1)

A is the attack or special attack stat. D is the defense or special defense stat. These stats our known
for our own team. The other items are special stats and mechanics that need to be tracked by our
clientside game engine. Please see the appendix for the list of all other mechanics calculated in
equation 3. A full prompt output is available in the appendix in listing 1.

2.2 Opponent Modeling

Unlike with the agent’s team, the opponent’s A attack and D defense is unknown. Using historical
data, we can estimate the likelihood of each set of stats the opponent may choose for their EV/IVs.
We can either choose the most likely option or sample from the set with probability equal to their
likelihood. The prompt for generating the likely opponent actions from the LLM is similar to the
action sampling. Afterwards, we can use our proprietary damage calculator to predict next turn state
given the edges from the player action and opponent action. Perfect prediction is not possible to be
perfect due to stochastic transition function that includes the random element of move damage and
accuracy and moves. We choose to be optimistic and choose the best option assuming maximum
damage, which means the high end of the random spectrum and 100% accuracy.

2.3 Value Function

Live games provide each player with 150 seconds for the entire match. An additional up to 15 seconds
is added to each player’s clock after their turn. Due to time limitations, we are unable to perform
exhaustive minimax tree search across all player and opponent action possibilities. Thus, we must
perform a value calculation at leaf nodes to estimate the utility of a state. We ask the LLM to provide
a score for the internal state based on the following prompt features:

• Add points: based on the effectiveness of current moves, number of player’s Pokémon
remaining, and overall player’s likelihood to win.

• Subtract points: based on excessive switching, effectiveness of opponent’s current moves,
faster opponent speed, number of opponent’s remaining Pokémon, and the strength of the
remaining Pokémon.

After the value is generated by the LLM, the value is propagated up the tree to the root, which chooses
the player actions with the highest score and the opponent actions that correspond to the lowest
scores.

3



Pok
éC
ha
mp

Pok
éC
ha
mp

 (L
lam

a)

Pok
éLL

Mo
n

Ab
yss

al

Dm
g C

alc

Ma
x P
ow
er

Ra
nd
om

Opponent Model

PokéChamp

PokéChamp (Llama)

PokéLLMon

Abyssal

Dmg Calc

Max Power

Random

M
od

el

0.56 0.76 0.84 0.76 0.80 1.00

0.44 0.83 0.56 0.56 0.88 1.00

0.24 0.17 0.40 0.44 0.72 0.88

0.16 0.44 0.60 0.56 0.84 1.00

0.24 0.44 0.56 0.44 0.84 1.00

0.20 0.12 0.28 0.16 0.16 0.00

0.00 0.00 0.12 0.00 0.00 0.00

Model Winrate Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Tea
m 
1

Tea
m 
2

Tea
m 
3

Tea
m 
4

Tea
m 
5

Opponent Model

Team 1

Team 2

Team 3

Team 4

Team 5

M
od

el

0.53 0.53 0.47 0.42

0.47 0.58 0.55 0.58

0.47 0.42 0.47 0.58

0.53 0.45 0.53 0.50

0.58 0.42 0.42 0.50

Team Winrate Matrix

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Left: Gen 9 OU matchup matrix per method. Right: Gen 9 OU matchup matrix per team

Table 3: PokéChamp versus online ladder players.

Winrate (%) Time Loss Rate (%) Elo Total Games
76% 33% 1500 50

3 Evaluation

In this section, we compare PokéChamp with baseline algorithms in the Gen 9 OU format. Then we
evaluate experiments on the online ladder. We provide additional experiments in the appendix G for
the Gen 8 Random Battles format. We also provide additional results regarding the collected dataset
and benchmarks in appendix D

3.1 Baselines

We compare with the best open source bots and a SOTA LLM-based agent. See appendix F. We
perform each experiment with at least 25 matches between any two individual methods per experiment.
Thus, each method is run in at least 100 games when computing the Elo. The LLM agents use either
Llama3.1:8b [7] or GPT-4o-2024-05-13 [1].

3.2 Fixed Battle and Meta

In table 2.2, we present the results of the Gen 9 OU battles. Each battle, the player and opponent
battle with one of five available Pokémon Showdown-approved teams. PokéChamp-GPT performs
the strongest out of any method with an 84% winrate over the Abyssal bot and an overall Elo of
1268. Notably, PokéChamp-Llama outperforms PokéLLMon, which is powered by GPT-4o. This
shows that even an 8 billion parameter model can outperform a frontier model if provided with
planning algorithms and tools. While the performance against the Abyssal bot looks increasing with
the complexity of the method, individual matchups show interesting behavior. In the left figure 1, we
present the individual winrates between any two methods. For instance, the PokéChamp-GPT has
a higher winrate over the Abyssal bot than the Llama version, but the Llama version has a higher
winrate over PokéLLMon. The average number of turns correlates slightly with the overall winrate
against the Abyssal bot and performance of the bot.

3.3 Online Ladder

PokéChamp battles real opponents on the ladder for a total of 50 games in the Gen 9 OU meta. The
fastest turns of our method take under 10 seconds to run. However, when there are full actions our
available for the player and opponent, our method can take as long as one minute (depending on the
speed of the LLM calls). Thus, 33% of the total games were lost due to running out of time on the
clock. In table 3, we show the results of the battles. Of the finished games, PokéChamp achieves a
76% winrate against real human opponents. With the opponent’s average rating of 1300, we have an
estimated Elo rating of 1500, which is in the top 10% of all players.
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A Appendix

B Mathematical Formalization

Partially observable Markov games: We consider finite-horizon, two-player zero-sum Markov
Games with partial observability, which can be described as a tuple POMG(H,S,X ,Y,A,B,P, r),
where

• H is the horizon length;

• S =
⋃

h∈[H] Sh is the (underlying) state space with |Sh| = Sh and
∑H

h=1 Sh = S;

• X =
⋃

h∈[H] Xh is the space of information sets (henceforth infosets) for the max-player

with |Xh| = Xh and X =
∑H

h=1 Xh. At any state sh ∈ Sh, the max-player only observes
the infoset xh = x(sh) ∈ Xh, where x : S → X is the emission function for the max-player;

• Y =
⋃

h∈[H] Yh is the space of infosets for the min-player with |Yh| = Yh and Y =∑H
h=1 Yh. An infoset yh and the emission function y : S → Y are defined similarly.

• A, B are the action spaces for the max-player and min-player, respectively, with |A| = A
and |B| = B;

• P = {p0(·) ∈ ∆(S1)} ∪ {ph(·|sh, ah, bh) ∈ ∆(Sh+1)}(sh,ah,bh)∈Sh×A×B, h∈[H−1] are
the transition probabilities, where p1(s1) is the probability of the initial state being s1, and
ph(sh+1|sh, ah, bh) is the probability of transitting to sh+1 given state-action (sh, ah, bh)
at step h;

• r = {rh(sh, ah, bh) ∈ [0, 1]}(sh,ah,bh)∈Sh×A×B is the binary reward for winning a game.

Policies, value functions: As we consider partially observability, each player’s policy can only
depend on the infoset rather than the underlying state. A policy for the max-player is denoted
by µ = {µh(·|xh) ∈ ∆(A)}h∈[H],xh∈Xh

, where µh(ah|xh) is the probability of taking action
ah ∈ A at infoset xh ∈ Xh. Similarly, a policy for the min-player is denoted by ν = {νh(·|yh) ∈
∆(B)}h∈[H],yh∈Yh

. A trajectory for the max player takes the form (x1, a1, r1, x2, . . . , xH , aH , rH),
where ah ∼ µh(·|xh), and the rewards and infoset transitions depend on the (unseen) opponent’s
actions and underlying state transition. The overall game value for any (product) policy (µ, ν)

is denoted by V µ,ν = Eµ,ν [
∑H

h=1 rh(sh, ah, bh)]. The max-player aims to maximize the value,
whereas the min-player aims to minimize the value.

Tree structure and perfect recall: We use a POMG with tree structure and the perfect recall
assumption as our formulation for IIEFGs, following [10]. We assume that our POMG has a tree
structure: For any h and sh ∈ Sh, there exists a unique history (s1, a1, b1, . . . , sh−1, ah−1, bh−1) of
past states and actions that leads to sh. We also assume that both players have perfect recall: For any
h and any infoset xh ∈ Xh for the max-player, there exists a unique history (x1, a1, . . . , xh−1, ah−1)
of past infosets and max-player actions that leads to xh (and similarly for the min-player).

Best response and Nash equilibrium: For a two-player game, for a max-player’s policy µ, there
exists a best response policy ν†(µ) by the min player, which satisfies V µ,ν†(µ)(s) = infν V

µ,ν(s) for
any s ∈ S and similarly for the min-player’s best response ν for µ†(ν) satisfying V †,ν = supµ V

µ,ν .

Definition: (Nash equilibrium). The Nash equilibrium is defined as a pair of policies (µ∗, ν∗) that
provide the optimal action choice when the opponent’s chooses the best response, which implies,
V µ∗,†(s) = supµ V

µ,†(s), V †,ν(s) = infν V
µ,ν(s), for all s ∈ S.

Nash equilibrium strategies satisfy the minimax equation, given by,

sup
µ

inf
ν
V µ,ν(s) = V µ∗,ν∗

(s) = inf
ν
sup
µ

V µ,ν(s). (2)
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C Damage Calculation

The full damage calculation is given by the following equation,

Damage =

(
1

50

((
2

5
· Level + 2

)
· Power · A

D

)
+ 2

)
· Targets
· PB
· Weather
· GlaiveRush
· Critical
· random
· STAB
· Type
· Burn
· other
· ZMove
· TeraShield.

(3)

Figure 2: PokéChamp replaces three components of minimax tree search with LLM-based generations:
(1) sampling potential actions for the player corresponding to the first part of the edge between states.,
(2) modeling the opponent and sampling opponent actions corresponding to the second part of the
edge between states, and (3) generating a potential game state value based on the depth K cutoff.
PokéChamp provides the action with the best minimax value to be used in battle.

An example prompt that is generated by the damage calculator for all matchups is provided in
listing 1.

1 Historical turns:
2 Battle start: You sent out Iron Crown. Opponent sent out Primarina

.
3 Turn 1: Current battle state:
4 Requires switch:
5 dragapult vs. primarina:
6 dragapult outspeeds primarina
7 dragapult ’s moves:
8 dragondarts: 161 turns to KO opponent ’s pokemon

8



9 uturn: 6 turns to KO opponent ’s pokemon
10 quickattack: 5 turns to KO opponent ’s pokemon
11 terablast: 5 turns to KO opponent ’s pokemon
12 dragapult ’s moves if opponent ’s primarina uses ’terastallize ’:
13 dragondarts: 3 turns to KO opponent ’s pokemon
14 uturn: 11 turns to KO opponent ’s pokemon
15 quickattack: 321 turns to KO opponent ’s pokemon
16 terablast: 321 turns to KO opponent ’s pokemon
17 dragapult ’s moves if it uses ’terastallize ’ and opponent ’s

primarina uses ’terastallize ’:
18 dragondarts: 4 turns to KO opponent ’s pokemon
19 uturn: 6 turns to KO opponent ’s pokemon
20 quickattack: 10 turns to KO opponent ’s pokemon
21 terablast: 9 turns to KO opponent ’s pokemon
22 dragapult ’s moves if it uses ’terastallize ’ and opponent ’s

primarina does NOT use ’terastallize ’:
23 dragondarts: 161 turns to KO opponent ’s pokemon
24 uturn: 6 turns to KO opponent ’s pokemon
25 quickattack: 5 turns to KO opponent ’s pokemon
26 terablast: 5 turns to KO opponent ’s pokemon
27 Opponent moves: primarina
28 moonblast: 2 turns to KO your pokemon
29 psychicnoise: 4 turns to KO your pokemon
30 surf: 4 turns to KO your pokemon
31 flipturn: 10 turns to KO your pokemon
32

33 Requires switch:
34 primarina vs. primarina:
35 primarina outspeeds primarina
36 primarina ’s moves:
37 calmmind: Raises user’s Special Attack and Special Defense. 3.0

turns to KO opponent ’s pokemon
38 surf: 4 turns to KO opponent ’s pokemon
39 moonblast: 2 turns to KO opponent ’s pokemon
40 psychicnoise: 4 turns to KO opponent ’s pokemon
41 primarina ’s moves if opponent ’s primarina uses ’terastallize ’:
42 calmmind: Raises user’s Special Attack and Special Defense. 3.0

turns to KO opponent ’s pokemon
43 surf: 2 turns to KO opponent ’s pokemon
44 moonblast: 4 turns to KO opponent ’s pokemon
45 psychicnoise: 7 turns to KO opponent ’s pokemon
46 primarina ’s moves if it uses ’terastallize ’ and opponent ’s

primarina uses ’terastallize ’:
47 calmmind: Raises user’s Special Attack and Special Defense. 3.0

turns to KO opponent ’s pokemon
48 surf: 3 turns to KO opponent ’s pokemon
49 moonblast: 6 turns to KO opponent ’s pokemon
50 psychicnoise: 7 turns to KO opponent ’s pokemon
51 primarina ’s moves if it uses ’terastallize ’ and opponent ’s

primarina does NOT use ’terastallize ’:
52 calmmind: Raises user’s Special Attack and Special Defense. 3.0

turns to KO opponent ’s pokemon
53 surf: 6 turns to KO opponent ’s pokemon
54 moonblast: 3 turns to KO opponent ’s pokemon
55 psychicnoise: 4 turns to KO opponent ’s pokemon
56 Opponent moves: primarina
57 moonblast: 3 turns to KO your pokemon
58 psychicnoise: 5 turns to KO your pokemon
59 surf: 5 turns to KO your pokemon
60 flipturn: 10 turns to KO your pokemon
61

62 Current pokemon:
63 ironcrown vs. primarina:
64 ironcrown outspeeds primarina
65 ironcrown ’s moves:

9



66 futuresight: 2 turns to KO opponent ’s pokemon
67 tachyoncutter: 2 turns to KO opponent ’s pokemon
68 voltswitch: 3 turns to KO opponent ’s pokemon
69 focusblast: 7 turns to KO opponent ’s pokemon
70 ironcrown ’s moves if opponent ’s primarina uses ’terastallize ’:
71 futuresight: 7 turns to KO opponent ’s pokemon
72 tachyoncutter: 4 turns to KO opponent ’s pokemon
73 voltswitch: 5 turns to KO opponent ’s pokemon
74 focusblast: 4 turns to KO opponent ’s pokemon
75 ironcrown ’s moves if it uses ’terastallize ’ and opponent ’s

primarina uses ’terastallize ’:
76 futuresight: 5 turns to KO opponent ’s pokemon
77 tachyoncutter: 3 turns to KO opponent ’s pokemon
78 voltswitch: 5 turns to KO opponent ’s pokemon
79 focusblast: 2 turns to KO opponent ’s pokemon
80 ironcrown ’s moves if it uses ’terastallize ’ and opponent ’s

primarina does NOT use ’terastallize ’:
81 futuresight: 3 turns to KO opponent ’s pokemon
82 tachyoncutter: 2 turns to KO opponent ’s pokemon
83 voltswitch: 3 turns to KO opponent ’s pokemon
84 focusblast: 7 turns to KO opponent ’s pokemon
85 Opponent moves: primarina
86 moonblast: 7 turns to KO your pokemon
87 psychicnoise: 22 turns to KO your pokemon
88 surf: 4 turns to KO your pokemon
89 flipturn: 7 turns to KO your pokemon
90

91 Requires switch:
92 samurotthisui vs. primarina:
93 samurotthisui outspeeds primarina
94 samurotthisui ’s moves:
95 ceaselessedge: 5 turns to KO opponent ’s pokemon
96 razorshell: 5 turns to KO opponent ’s pokemon
97 knockoff: 5 turns to KO opponent ’s pokemon
98 encore: Forces opponent to keep using its last move for 3 turns.

inf turns to KO opponent ’s pokemon
99 samurotthisui ’s moves if opponent ’s primarina uses ’terastallize ’:

100 ceaselessedge: 5 turns to KO opponent ’s pokemon
101 razorshell: 3 turns to KO opponent ’s pokemon
102 knockoff: 5 turns to KO opponent ’s pokemon
103 encore: Forces opponent to keep using its last move for 3 turns.

inf turns to KO opponent ’s pokemon
104 samurotthisui ’s moves if it uses ’terastallize ’ and opponent ’s

primarina uses ’terastallize ’:
105 ceaselessedge: 4 turns to KO opponent ’s pokemon
106 razorshell: 4 turns to KO opponent ’s pokemon
107 knockoff: 4 turns to KO opponent ’s pokemon
108 encore: Forces opponent to keep using its last move for 3 turns.

inf turns to KO opponent ’s pokemon
109 samurotthisui ’s moves if it uses ’terastallize ’ and opponent ’s

primarina does NOT use ’terastallize ’:
110 ceaselessedge: 8 turns to KO opponent ’s pokemon
111 razorshell: 7 turns to KO opponent ’s pokemon
112 knockoff: 7 turns to KO opponent ’s pokemon
113 encore: Forces opponent to keep using its last move for 3 turns.

inf turns to KO opponent ’s pokemon
114 Opponent moves: primarina
115 moonblast: 2 turns to KO your pokemon
116 psychicnoise: 322 turns to KO your pokemon
117 surf: 4 turns to KO your pokemon
118 flipturn: 11 turns to KO your pokemon
119

120 Requires switch:
121 kingambit vs. primarina:
122 primarina outspeeds kingambit
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123 kingambit ’s moves:
124 swordsdance: Sharply raises user’s Attack. 2.0 turns to KO

opponent ’s pokemon
125 kowtowcleave: 3 turns to KO opponent ’s pokemon
126 suckerpunch: 4 turns to KO opponent ’s pokemon
127 ironhead: 2 turns to KO opponent ’s pokemon
128 kingambit ’s moves if opponent ’s primarina uses ’terastallize ’:
129 swordsdance: Sharply raises user’s Attack. 2.0 turns to KO

opponent ’s pokemon
130 kowtowcleave: 2 turns to KO opponent ’s pokemon
131 suckerpunch: 2 turns to KO opponent ’s pokemon
132 ironhead: 6 turns to KO opponent ’s pokemon
133 kingambit ’s moves if it uses ’terastallize ’ and opponent ’s

primarina uses ’terastallize ’:
134 swordsdance: Sharply raises user’s Attack. 2.0 turns to KO

opponent ’s pokemon
135 kowtowcleave: 1 turns to KO opponent ’s pokemon
136 suckerpunch: 2 turns to KO opponent ’s pokemon
137 ironhead: 5 turns to KO opponent ’s pokemon
138 kingambit ’s moves if it uses ’terastallize ’ and opponent ’s

primarina does NOT use ’terastallize ’:
139 swordsdance: Sharply raises user’s Attack. 3.0 turns to KO

opponent ’s pokemon
140 kowtowcleave: 2 turns to KO opponent ’s pokemon
141 suckerpunch: 3 turns to KO opponent ’s pokemon
142 ironhead: 3 turns to KO opponent ’s pokemon
143 Opponent moves: primarina
144 moonblast: 3 turns to KO your pokemon
145 psychicnoise: 405 turns to KO your pokemon
146 surf: 3 turns to KO your pokemon
147 flipturn: 9 turns to KO your pokemon
148

149 Requires switch:
150 landorustherian vs. primarina:
151 landorustherian outspeeds primarina
152 landorustherian ’s moves:
153 stealthrock: Damages opponents switching into battle. inf turns

to KO opponent ’s pokemon
154 earthpower: 4 turns to KO opponent ’s pokemon
155 uturn: 6 turns to KO opponent ’s pokemon
156 grassknot: 4 turns to KO opponent ’s pokemon
157 landorustherian ’s moves if opponent ’s primarina uses ’terastallize

’:
158 stealthrock: Damages opponents switching into battle. inf turns

to KO opponent ’s pokemon
159 earthpower: 321 turns to KO opponent ’s pokemon
160 uturn: 11 turns to KO opponent ’s pokemon
161 grassknot: 30 turns to KO opponent ’s pokemon
162 landorustherian ’s moves if it uses ’terastallize ’ and opponent ’s

primarina uses ’terastallize ’:
163 stealthrock: Damages opponents switching into battle. inf turns

to KO opponent ’s pokemon
164 earthpower: 3 turns to KO opponent ’s pokemon
165 uturn: 6 turns to KO opponent ’s pokemon
166 grassknot: 15 turns to KO opponent ’s pokemon
167 landorustherian ’s moves if it uses ’terastallize ’ and opponent ’s

primarina does NOT use ’terastallize ’:
168 stealthrock: Damages opponents switching into battle. inf turns

to KO opponent ’s pokemon
169 earthpower: 5 turns to KO opponent ’s pokemon
170 uturn: 6 turns to KO opponent ’s pokemon
171 grassknot: 4 turns to KO opponent ’s pokemon
172 Opponent moves: primarina
173 moonblast: 3 turns to KO your pokemon
174 psychicnoise: 4 turns to KO your pokemon
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Table 4: Player and opponent action prediction accuracy by Elo. Random performance is 10%.

Model Elo Player Accuracy (%) Opponent Accuracy (%)
PokéChamp (Ours) 1200 30% 13%
PokéChamp (Ours) 1400 26% 16%
PokéChamp (Ours) 1600 27% 13%
PokéChamp (Ours) 1800 30% 15%

175 surf: 2 turns to KO your pokemon
176 flipturn: 4 turns to KO your pokemon
177

178 ’terastallize ’ changes a Pokemon ’s defensive typing to solely
their tera type , meaning their resistances and weaknesses can
change. It also gives them a boost to moves of their new typing
. You can only ’terastallize ’ one Pokemon per battle , and it
will last on that Pokemon until they are KO’d or the battle
ends. You can choose to ’terastallize ’ and use another move in
the same turn.

179 Recall the information about each of ironcrown ’s move actions and
available switch actions. Which move or switch will KO the
opponent ’s pokemon in the fewest turns?

180 You are able to use [’terastallize ’] this turn as well.
181 It is recommended you choose to ’terastallize ’ this turn paired

with a move from your available moves.
182 You have 5 pokemons:
183 [<switch_pokemon_name >] = [’landorustherian ’, ’dragapult ’, ’

kingambit ’, ’samurotthisui ’, ’primarina ’]
184 Your current Pokemon: ironcrown.
185 Choose only from the following action choices:
186 [<move_name >] = [’futuresight ’, ’tachyoncutter ’, ’voltswitch ’, ’

focusblast ’]
187 Choose the best action and your output MUST be a JSON like: {"move

":"<move_name >"} or {"terastallize":"<move_name >"} or {"switch"
:"<switch_pokemon_name >"}

188 In fewer than 3 sentences , let’s think step by step:
189

190 {" terastallize ":" focusblast "}

Listing 1: Example prompt from damage calculator.

D Dataset and Puzzles

We use our dataset, which is the first and largest Pokémon battling dataset, to establish a set of
benchmark puzzles to understand key mechanics and strategies commonly found in battles. We
establish a move prediction and opponent modeling benchmark based on high-elo human data to
show the limitations of prompting LLMs. Our 1v1 benchmark provides an opportunity to evaluate
the competency of our bot to choose the best moves for individual matchups.

D.1 Pokémon Battling Dataset

We scraped over 1 million games of replay data from Pokémon Showdown for use in our opponent
prediction model. Over 150k replays are from high Elo games (>1600 Elo). An analysis of the data
can be seen in figure 4. The data shows the distribution of Elos follows a multi-modal distribution
with 2 modes, approximately 1150 and 1350. It shows that higher Elo matches typically take longer.

D.2 Human Action Prediction

The replay data provides information about battles from the perspective of the opponent. This means
that not all stats are available. Thus, in order to perform prediction, we must first reverse engineer the

12



Figure 3: PokeChamp in Figure 8 (right) understands the changed weakness of Roaring Moon and
decides to switch after Glimmora is chosen, as terastallizing has caused Roaring Moon to become
weak to rock-types. PokeChamp in Figure 8 (left) uses dynamax to increase its hit points and cause
its moves to deal more damage, allowing it to knock out two Pokémon in a row.

Table 5: 1v1 benchmark performance comparison.

Model Win Rate (%)
Pokellmon 76%
Pokéchamp (Ours) 86%

moves, team, and stats from the replay data. Afterwards, we can fill in additional switching and move
options from what is historically likely. Feeding this information into our prompt generator will give
our bot the ability to predict player and opponent actions.

We compare the accuracy of these actions with the historical data across various Elos. Our results are
shown in table C. The player prediction accuracy for PokéChamp varies between 26% and 30% as Elo
increases while the opponent prediction accuracy is lower, between 13% and 16%. This shows that
predicting opponent actions is more difficult given our state information. The opponent prediction
performs a little better than random, while the player prediction performs much better than random.
However, there is still quite an improvement to be made. There may also be more than one correct
action possible. Many strategies may be equally optimal option. Rather, the performance may simply
have to do with player preference.

D.3 Benchmark Puzzles

We set up a series of benchmark puzzles to determine whether the agent is able to correctly approach
each of the battle mechanics: choosing the best move in individual matchups and using special
mechanics such as terastallization and dynamaxing to one’s advantage. More puzzles and analysis of
situations are available in the appendix E.2.

D.3.1 One versus One

In order to understand if our agent is able to choose the the correct sequence of moves to KO the
opponent’s Pokémon before they can KO the player’s Pokémon, we create a 1v1 benchmark. We
select matchups from the gen8randombattles meta. Each matchup consists of one Pokémon on each
team. In order to ensure that there is a feasible win condition, we reject samples that are not able to
be won by the Abyssal bot. Though, we note due to the stochasticity of move damage, this does not
ensure 100% is possible every time. We sample 1000 1v1 configurations and report the performance
in table D.3.2. Our method is able to win 10% more consistently due to the use of the damage
calculator in the lookahead.

D.3.2 Special Mechanics: Terastallization and Dynamax

Our world model and prompting mechanism for PokeChamp allow it to understand and use generation-
specific game mechanics, in this case Dynamax and Terastallization. It is informed of what the
mechanics do, and the damage calculator is used to inform PokeChamp about the different outcomes
if it were to use the mechanics.
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Figure 4: Left: Elo distribution for collected battles for each gamemode. Right: Game length by elo
(scatter plot).

E Dataset and More Puzzles

E.1 Stall Strategy

PokeChamp struggles with stall strategies, where opponents will try to use status effect moves to win
game slowly. This is due to uncertainty in the current matchup, causing PokeChamp to choose to
switch its current Pokemon in favor of another. See figure 5.

E.2 Excessive Switching

PokeChamp is struggles with capitalizing on its opponent excessively switching. Here, opponents
will switch Pokémon often to prevent short lookahead methods from choosing the optimal action.
See figure 5.

Figure 5: Left: Stall strategy: PokeChamp decides to use Darkrai against Blissey as Darkrai’s Focus
Blast is strong against Blissey. However, PokeChamp instead decides to switch to Enamorous, which
faints from entry hazards, before sending Darkrai back in. It misses it first Focus Blast against Blissey,
which causes PokeChamp to become more uncertain and decide to switch to another Pokemon. Right:
Opponent excessive switching strategy: PokeChamp is unable to capitalize or defend itself from being
capitalized on by a strategy where the opponent excessively switches their Pokemon. It chooses
to consistently choose Focus Blast rather than switch strategies, which is exploited by switching
between two Pokemon that are resistant to fighting-type attacks.

F Baselines

PokéLLMon [9] is a prompting-based language agent that provide state features and a battle history
to the LLM to produce an action. It uses the self-consistency [17] prompting method to output the
most likely action. Abyssal Bot is a heuristic bot used as the most challenging game intelligence
in the Pokémon video games. The bot has rules to setup stat-boosting moves and select the highest
damage actions, taking into consideration typing advantages and other mechanics. It also rates
matchups so that they try to switch to the best matchups to defeat the opponent. Dmg Calc Bot is
a planning-based bot that we created to output the action that provides the greatest damage to the
current enemy Pokémon based on our proprietary game engine. Max Power Bot selects the move
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with the highest power level regardless of the typing advantage or disadvantage. Random selects
randomly generated actions.

G Random Battles

In this section we present experiments with PokéChamp against wbaselines in the Gen 8 Random
Battles meta with and without the dynamaxing mechanic.

The results for Gen 8 Random Battles follow from the main results of the paper. Though, with
less reliance on the damage calculator since the opponent-modeling from the historical data is not
available. Even without this feature, PokéChamp clearly outperforms all other methods. See figure G
for results with the dynamax mechanic. See figure G for results without the dynamax mechanic. See
figure 6 shows the winrate of the individual method matchups.

Table 6: Gen 8 Random Battles without dynamax mechanic.

Bot Method Language Model Win Rate vs. Abyssal (%)
PokéChamp (Ours) GPT-4o 70%
PokéChamp (Ours) Llama 3.1:8b 64%
PokéLLMon [9] GPT-4o 56%
Dmg Calc N/A 44%

Table 7: Gen 8 Random Battles with dynamax mechanic.

Bot Method Language Model Win Rate vs. Abyssal (%) Elo Avg # Turns
PokéChamp (Ours) GPT-4o 56% 1273 17.1
PokéChamp (Ours) Llama 3.1:8b 52% 1184 19.1
PokéLLMon GPT-4o 36% 1048 22.5
Abyssal N/A N/A 1213 19.0
Dmg Calc N/A 16% 998 18.9
Max Power N/A 4% 787 23.2
Random N/A 0% 493 24.3
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